143 research outputs found

    Cobi: A Community-Informed Conference Scheduling Tool

    Get PDF
    Effectively planning a large multi-track conference requires an understanding of the preferences and constraints of organizers, authors, and attendees. Traditionally, the onus of scheduling the program falls on a few dedicated organizers. Resolving conflicts becomes difficult due to the size and complexity of the schedule and the lack of insight into community members ’ needs and desires. Cobi presents an alternative approach to conference scheduling that engages the entire community in the planning process. Cobi comprises (a) communitysourcing applications that collect preferences, constraints, and affinity data from community members, and (b) a visual scheduling interface that combines communitysourced data and constraint-solving to enable organizers to make informed improvements to the schedule. This paper describes Cobi’s scheduling tool and reports on a live deployment for planning CHI 2013, where organizers considered input from 645 authors and resolved 168 scheduling conflicts. Results show the value of integrating community input with an intelligent user interface to solve complex planning tasks. Author Keywords Cobi; conference scheduling; mixed-initiative; constrain

    Toward collaborative ideation at scale: Leveraging ideas from others to generate more creative and diverse ideas

    Get PDF
    ABSTRACT A growing number of large collaborative idea generation platforms promise that by generating ideas together, people can create better ideas than any would have alone. But how might these platforms best leverage the number and diversity of contributors to help each contributor generate even better ideas? Prior research suggests that seeing particularly creative or diverse ideas from others can inspire you, but few scalable mechanisms exist to assess diversity. We contribute a new scalable crowd-powered method for evaluating the diversity of sets of ideas. The method relies on similarity comparisons (is idea A more similar to B or C?) generated by non-experts to create an abstract spatial idea map. Our validation study reveals that human raters agree with the estimates of dissimilarity derived from our idea map as much or more than they agree with each other. People seeing the diverse sets of examples from our idea map generate more diverse ideas than those seeing randomly selected examples. Our results also corroborate findings from prior research showing that people presented with creative examples generated more creative ideas than those who saw a set of random examples. We see this work as a step toward building more effective online systems for supporting large scale collective ideation

    Frenzy: Collaborative data organization for creating conference sessions

    Get PDF
    Organizing conference sessions around themes improves the experience for attendees. However, the session creation process can be difficult and time-consuming due to the amount of expertise and effort required to consider alternative paper groupings. We present a collaborative web application called Frenzy to draw on the efforts and knowledge of an entire program committee. Frenzy comprises (a) interfaces to support large numbers of experts working collectively to create sessions, and (b) a two-stage process that decomposes the session-creation problem into meta-data elicitation and global constraint satisfaction. Meta-data elicitation involves a large group of experts working simultaneously, while global constraint satisfaction involves a smaller group that uses the meta-data to form sessions. We evaluated Frenzy with 48 people during a deployment at the CSCW 2014 program committee meeting. The session making process was much faster than the traditional process, taking 88 minutes instead of a full day. We found that meta-data elicitation was useful for session creation. Moreover, the sessions created by Frenzy were the basis of the CSCW 2014 schedule.Ford-MIT AllianceNational Science Foundation (U.S.) (Award SOCS-1111124)National Science Foundation (U.S.) (Award SOCS-1208382)United States. Office of Naval Research (Grant N00014-12-1-0211)National Science Foundation (U.S.) (Grant IIS 1016713)National Science Foundation (U.S.) (Grant IIS-1110965

    Dynamics of an Idealized Fluid Model for Investigating Convective-scale Data Assimilation

    Get PDF
    An idealized fluid model of convective-scale numerical weather prediction, intended for use in inexpensive data assimilation experiments, is described here and its distinctive dynamics are investigated. The model modifies the rotating shallow water equations to include some simplified dynamics of cumulus convection and associated precipitation, extending and improving the model of WΓΌrsch and Craig. Changes to this original model are the removal of ad hoc diffusive terms and the addition of Coriolis rotation terms, leading to a so-called 1.5-dimensional model. Despite the non-trivial modifications to the parent equations, it is shown that this shallow water type model remains hyperbolic in character and can be integrated accordingly using a discontinuous Galerkin finite element method for nonconservative hyperbolic systems of partial differential equations. Combined with methods to ensure well-balancedness and non-negativity, the resulting numerical solver is novel, efficient and robust. Classical numerical experiments in the shallow water theory, such as the Rossby geostrophic adjustment and flow over topography, are reproduced for the standard shallow water model and used to highlight the modified dynamics of the new model. In particular, it exhibits important aspects of convective-scale dynamics relating to the disruption of large-scale balance and is able to simulate other features related to convecting and precipitating weather systems. Our analysis here and preliminary results suggest that the model is well suited for efficiently and robustly investigating data assimilation schemes in an idealized β€˜convective-scale’ forecast assimilation framework

    Molecular Basis of Rare Aminoglycoside Susceptibility and Pathogenesis of Burkholderia pseudomallei Clinical Isolates from Thailand

    Get PDF
    Burkholderia pseudomallei is the etiologic agent of melioidosis, an emerging tropical disease. Because of low infectious dose, broad-host-range infectivity, intrinsic antibiotic resistance and historic precedent as a bioweapon, B. pseudomallei was listed in the United States as a Select Agent and Priority Pathogen of biodefense concern by the US Centers for Disease Control and Prevention and the National Institute of Allergy and Infectious Diseases. The mechanisms governing antibiotic resistance and/or susceptibility and virulence in this bacterium are not well understood. Most clinical and environmental B. pseudomallei isolates are highly resistant to aminoglycosides, but susceptible variants do exist. The results of our studies with three such variants from Thailand reveal that lack of expression or deletion of an efflux pump is responsible for this susceptibility. The large deletion present in one strain not only removes an efflux pump but also several putative virulence genes, including an entire siderophore gene cluster. Despite this deletion, the strain is fully virulent in an acute mouse melioidosis model. In summary, our findings shed light on mechanisms of antibiotic resistance and pathogenesis. They also validate the previously advocated use of laboratory-constructed, aminoglycoside susceptible efflux pump mutants in genetic manipulation experiments

    An improved selective culture medium enhances the isolation of Burkholderia pseudomallei from contaminated specimens.

    Get PDF
    Burkholderia pseudomallei is a Gram-negative environmental bacterium found in tropical climates that causes melioidosis. Culture remains the diagnostic gold standard, but isolation of B. pseudomallei from heavily contaminated sites, such as fecal specimens, can be difficult. We recently reported that B. pseudomallei is capable of infecting the gastrointestinal tract of mice and suggested that the same may be true in humans. Thus, there is a strong need for new culture techniques to allow for efficient detection of B. pseudomallei in fecal and other specimens. We found that the addition of norfloxacin, ampicillin, and polymyxin B to Ashdown's medium (NAP-A) resulted in increased specificity without affecting the growth of 25 B. pseudomallei strains. Furthermore, recovery of B. pseudomallei from human clinical specimens was not affected by the three additional antibiotics. Therefore, we conclude that NAP-A medium provides a new tool for more sensitive isolation of B. pseudomallei from heavily contaminated sites

    Acquisition and Evolution of Plant Pathogenesis–Associated Gene Clusters and Candidate Determinants of Tissue-Specificity in Xanthomonas

    Get PDF
    Xanthomonas is a large genus of plant-associated and plant-pathogenic bacteria. Collectively, members cause diseases on over 392 plant species. Individually, they exhibit marked host- and tissue-specificity. The determinants of this specificity are unknown.To assess potential contributions to host- and tissue-specificity, pathogenesis-associated gene clusters were compared across genomes of eight Xanthomonas strains representing vascular or non-vascular pathogens of rice, brassicas, pepper and tomato, and citrus. The gum cluster for extracellular polysaccharide is conserved except for gumN and sequences downstream. The xcs and xps clusters for type II secretion are conserved, except in the rice pathogens, in which xcs is missing. In the otherwise conserved hrp cluster, sequences flanking the core genes for type III secretion vary with respect to insertion sequence element and putative effector gene content. Variation at the rpf (regulation of pathogenicity factors) cluster is more pronounced, though genes with established functional relevance are conserved. A cluster for synthesis of lipopolysaccharide varies highly, suggesting multiple horizontal gene transfers and reassortments, but this variation does not correlate with host- or tissue-specificity. Phylogenetic trees based on amino acid alignments of gum, xps, xcs, hrp, and rpf cluster products generally reflect strain phylogeny. However, amino acid residues at four positions correlate with tissue specificity, revealing hpaA and xpsD as candidate determinants. Examination of genome sequences of xanthomonads Xylella fastidiosa and Stenotrophomonas maltophilia revealed that the hrp, gum, and xcs clusters are recent acquisitions in the Xanthomonas lineage.Our results provide insight into the ancestral Xanthomonas genome and indicate that differentiation with respect to host- and tissue-specificity involved not major modifications or wholesale exchange of clusters, but subtle changes in a small number of genes or in non-coding sequences, and/or differences outside the clusters, potentially among regulatory targets or secretory substrates
    • …
    corecore